
윈도우 소프트웨어 버그헌팅
취약점 분석 팁을 곁들인

화이트햇 스쿨 1기 강찬송, 김민서

© Hackingcamp. All Rights Reserved

목차

© Hackingcamp. All Rights Reserved

01
프로젝트

소개

02
취약점 분석

방법론

04
취약점 제보

절차

03
취약점 분석

과정

발표자 소개

© Hackingcamp. All Rights Reserved

강찬송 김민서

화이트햇 스쿨 1기 수료생

명지전문대학 졸업

화이트햇 스쿨 1기 수료생

서울대학교 3학년 재학

프로젝트의 필요성

© Hackingcamp. All Rights Reserved

• 보안 문제에 대한 인식을 강화하는 데 기여

• 궁극적으로 기업과 개인 사용자 모두에게 더욱 강력하고 안전한 디지털 환경을 구축하는데 기여

사회 기여

• 취약점 탐색 능력 강화

• 리버싱, 시스템 관련 지식 증진

지식 향상

프로젝트 분석 대상

© Hackingcamp. All Rights Reserved

• 상용 소프트웨어 실행 시 메모리에서 발생할 수 있는 메모리 커럽션 취약점이 탐색 대상

• Stack overflow, Heap overflow, Out-of-bounds read/write, Integer overflow, Integer issue 등의 취약점

Memory
Corruption

• 데이터의 길이에 대한 불명확한 정의

• Stack / Heap 영역에서의 덮어쓰기

• strcpy, scanf, fread …

취약점 유형 1
Buffer Overflow

© Hackingcamp. All Rights Reserved

data[100] DUMMY SFP RETSTACK
COOKIE

• int ⇔ size_t

• -1 ⇔ 0xFFFFFFFF

취약점 유형 2
Integer Issue

© Hackingcamp. All Rights Reserved

0x40000001
4

0x100000004

• 배열의 임의 인덱스에 접근할 수 있어
발생하는 취약점

• 인덱스 값 음수이거나 배열의 길이를
벗어날 때

• 임의 주소 읽기 및 쓰기 가능함

취약점 유형 3
Out of Bounds Read/Write

© Hackingcamp. All Rights Reserved

© Hackingcamp. All Rights Reserved

취약점 분석 방법론

취약점 분석 방법론
블랙박스, 화이트박스, 그레이박스

© Hackingcamp. All Rights Reserved

https://kratikal.com/blog/types-of-testing-techniques-black-white-and-grey-box/

취약점 분석 방법론
퍼징

Crash

퍼저

테스트 케이스

소프트웨어

•소프트웨어에 랜덤한 데이터 넣었을 때 발생하는 크래시를 분석하여 취약점을 찾아내는 것

•모든 취약점을 다 찾을 순 없고, 오탐일 가능성도 존재

© Hackingcamp. All Rights Reserved

취약점 분석 방법론
Dumb 퍼저 vs WinAFL 퍼저

© Hackingcamp. All Rights Reserved

•랜덤하게 데이터 주입 •코드 커버리지 측정

WinAFL 퍼저Dumb 퍼저

vs

•비효율적임

•프로그램 동작 분석 불필요

•쉽게 구현 가능

•복잡한 버그 찾기 어려움 •복잡한 버그 발견 가능성 높음

•뮤테이션 기반 퍼징

•프로그램 동작에 대한 분석 필요

•하네스를 활용해 효율적인 퍼징 가능

1) 코드 커버리지: 테스트 케이스가 프로그램의 어떤 코드 부분을 실행했는지를 측정하는 지표

2) 뮤테이션: 특정 알고리즘을 이용해서 기존의 입력 데이터를 변형하여 새로운 테스트 케이스를 생성하는 과정

취약점 분석 방법론
WinAFL 동작 과정

© Hackingcamp. All Rights Reserved

타겟 함수 도달까지 실행

커버리지 기록 시작

타겟 함수 반환까지 실행

입력 값 조정

실행 종료

퍼저

커버리지 측정 결과

타겟 함수

입력 값 조정

취약점 분석 방법론
WinAFL 타겟 함수 선정

© Hackingcamp. All Rights Reserved

퍼저

커버리지 측정 결과

타겟 함수

입력 값 조정

•함수 종료 후 파일을 수정할 수 있어야 함

•파일을 열고 파싱을 수행해야 함

•정상적으로 반환되어야 함

타겟 함수 선정 기준

취약점 분석 방법론
소스 코드 오디팅

© Hackingcamp. All Rights Reserved

오픈 소스 소프트웨어의 소스 코드를 분석하여 취약점 탐색

취약점 분석 방법론
리버스 엔지니어링

© Hackingcamp. All Rights Reserved

WinDbg, x64Dbg 등의 툴을 사용해 프로그램의 동작(함수) 분석

© Hackingcamp. All Rights Reserved

취약점 분석 과정

취약점 분석 과정
보호 기법 확인 (procexp)

© Hackingcamp. All Rights Reserved

https://learn.microsoft.com/en-us/sysinternals/downloads/sysinternals-suite

취약점 분석 과정
CVE 확인 (MITRE)

© Hackingcamp. All Rights Reserved

© Hackingcamp. All Rights Reserved

• 뷰어 프로그램은 여러 가지 확장자를 열어볼 수 있음

• 확장자별 dll의 함수를 불러와 파싱 수행

취약점 분석 과정
뷰어 프로그램

dllfile

뷰어 프로그램

ReadFile Load Library

파싱 함수

취약점 분석 과정
API 호출 지점 파악

© Hackingcamp. All Rights Reserved

https://learn.microsoft.com/en-us/sysinternals/downloads/sysinternals-suite

ReadFile, Image Load 등으로 필터링하여 확인

취약점 분석 과정
함수 인자 분석

© Hackingcamp. All Rights Reserved

정적 분석 (IDA) 동적 분석 (WinDbg)

취약점 분석 과정
하네스 작성

© Hackingcamp. All Rights Reserved

•타겟 함수만 가져와 퍼징 수행하기 위해 제작

•WinAFL은 하네스의 타겟 함수에만 집중

•함수 인자 분석 필요

• char 타입 문자열을 wchar 타입으로 변환

•라이브러리 함수의 인자 타입을 기반으로 하여 함수
포인터 정의

취약점 분석 과정
하네스 작성

© Hackingcamp. All Rights Reserved

•실질적인 퍼징의 대상이 되는 함수

• fuzzme 함수를 도와주는 함수

•타겟 함수의 인자들을 설정한 뒤 호출

• dll의 타겟 함수를 가져와 함수 포인터 변수에 저장

취약점 분석 과정
시드 파일 확보

© Hackingcamp. All Rights Reserved

• 샘플 파일 찾기

• 자체 제작

• http://fileformats.archiveteam.org/wiki/Main_Page

•파일 구조에 대한 문서를 참고해 직접 제작

•기존 파일 수정

취약점 분석 과정
실행 전 커버리지 확인

© Hackingcamp. All Rights Reserved

로드된 모듈, 열린 파일 및 커버리지 정보를 로그 파일에 기록(디버그 모드)

인수 개수

fuzz할 타겟 함수가 포함된 모듈

커버리지를 기록할 모듈

fuzz할 메서드 이름

타겟 함수가 다시 시작되기 전 실행할 최대 반복 횟수

취약점 분석 과정
실행 전 커버리지 확인

© Hackingcamp. All Rights Reserved

Dynamorio가 실행 시작하면서 DLL들을 메모리에
로드하는 과정 확인

(타겟 DLL명과 로드될 때 인식되는 DLL명이 다른 경우 존재)

타겟 모듈(dll)의 코드 커버리지 맵 확인

(내부 함수 진입 실패 시 커버리지 측정 안 됨)

퍼징 전처리, 시드 파일 테스트, 퍼징 후처리 반복
과정 확인

(하네스 잘못 작성 시 시드 파일 읽기 실패)

취약점 분석 과정
WinAFL 퍼징

© Hackingcamp. All Rights Reserved

DynamoRIO 바이너리 (drrun, drconfig)가 있는 디렉토리

각 실행에 대한 타임아웃퍼저 발견물을 저장할 디렉토리

테스트 케이스가 있는 입력 디렉토리

[옵션]

-M [fuzzer명] / -S [fuzzer명] : Master-Slave 병렬 퍼징

-x [dictionary 파일 위치] : 뮤테이션에 활용할 토큰 목록 제시

취약점 분석 과정
WinAFL 퍼징

© Hackingcamp. All Rights Reserved

• 마스터-슬레이브 모드로 병렬 퍼징 수행

• 슬레이브는 뮤테이션 전략을 순서대로가 아닌 랜덤하게 수행

• 각 퍼저별로 유니크 크래시가 나옴

취약점 분석 과정
크래시 취합＆분류

© Hackingcamp. All Rights Reserved

•퍼저별로 흩어진 크래시들을 한 곳에 취합

• Renaming + 적절한 확장자 추가

•크래시 재현 여부 확인, 레지스터 및 콜 스택 정보 수집

• eip 레지스터 기준으로 중복 크래시 재분류

취약점 분석 과정
WinDbg + TTD(Time Travel debugging)

© Hackingcamp. All Rights Reserved

취약점 분석 과정
IDA + Lighthouse

© Hackingcamp. All Rights Reserved

https://github.com/gaasedelen/lighthouse

•코드 커버리지를 시각적으로 제공

• drrun.exe의 옵션을 사용해서 커버리지 로그
파일 추출

https://gist.github.com/wumb0/de671cc5051353fd32af4aecc811a282

• drcov 버전이 3인 경우 2로 낮춰줘야
라이트하우스에서 파싱 가능

취약점 분석 과정
실전!

© Hackingcamp. All Rights Reserved

① 분석할 크래시 하나 선택

② Windbg 붙여 실행중인 프로그램으로 크래시 파일 열기,
프로그램 터지는 시점 분석

③ 콜스택 분석

Buffer Overflow, 콜스택 망가짐

취약점 분석 과정
실전!

© Hackingcamp. All Rights Reserved

④ 콜스택 tracing → Canary CHECK 부분 확인

⑥ 콜스택 tracing → 함수 간 호출 순서 파악

⑤ Canary 덮이는 부분 확인, 그 지점에서의 콜스택 확인

WHEN??

취약점 분석 과정
실전!

© Hackingcamp. All Rights Reserved

⑦ IDA 이용해 Root Cause 분석

32자 유니코드 배열

종료조건 미흡!

취약점 분석 과정
익스플로잇 데모 영상

© Hackingcamp. All Rights Reserved

WinAFL의 한계
WinAFL 퍼징은 무적이 아닙니다

© Hackingcamp. All Rights Reserved

GUI 렌더링, 복잡한 초기화 작업 등의

요인으로 인한 심각한 속도 저하

상세 조건 맞춰주지 않으면

Dry run 뜨면서 퍼저 강제 종료

WinAFL의 한계
WinAFL 퍼징은 무적이 아닙니다

© Hackingcamp. All Rights Reserved

MediaMonkeyEngine.exe

MediaMonkey.exe

MediaMonkeyEngine.exe MediaMonkeyEngine.exe

1. 상위 프로세스 퍼징이
효과적이지 않다면?

2. 단독으로 실행할 수 없다면?

3. 패치해도 프로세스 간 종속성
때문에 퍼징에 실패한다면?

스냅샷(인메모리) 퍼징
WTF Fuzzer

© Hackingcamp. All Rights Reserved

스냅샷(Snapshot)?

순간을 재빠르게 포착한 사진.

특정 시점에 데이터 저장 장치의 상태를 별도의 파일로 저장하는 것.

ESP

EBP

ESI

⋯

PC

• 프로그램을 특정 시점까지 실행시킨 후

메모리 상태를 스냅샷 찍음

• 변형된 입력을 반복적으로 주입하여

취약점 탐지

스냅샷(인메모리) 퍼징
WTF Fuzzer

© Hackingcamp. All Rights Reserved

GUI 초기화 작업

기타 초기화 작업

파일 입력 대기 상태

파일 메타데이터 파싱

파일 유효성 검증

파일 데이터 파싱

파일 닫기

• 프로세스 생성하고 입력값 받기까지의 상당한 오버헤드

• 속도 향상: 복잡한 초기화 과정 건너뛰고 분석 지점부터

테스트 케이스 주입 가능

• 분석의 집중화: 관심 있는 특정 동작 코드에 집중

© Hackingcamp. All Rights Reserved

취약점 제보 절차

취약점 제보 절차
1. 벤더사 직접 제보

© Hackingcamp. All Rights Reserved

① 벤더사 이메일 주소 확인

② PoC 파일 및 분석 보고서 준비

취약점 제보 절차
1. 벤더사 직접 제보

© Hackingcamp. All Rights Reserved

③ 개발자에게 이메일로

PoC 파일 및 보고서 전달

④ 패치 완료 후

개발자의 CVE 신청

④ 패치 거부

CVE 신청하지 않음

취약점 제보 절차
2. Zero Day Initiative(ZDI) 제보

© Hackingcamp. All Rights Reserved

ZDI 발행 목록: UPCOMING vs. PUBLISHED 계정 관리: 진행 상황 확인, 제보, 개인정보 설정 등

취약점 제보 절차
2. Zero Day Initiative(ZDI) 제보

© Hackingcamp. All Rights Reserved

제목: PUBLISHED ADVISORIES 참고하여 작성

본문: 취약점 제목, 취약점에 대한 요약 및 잠재적인
영향, 취약점이 발생한 제품의 상세 버전, 취약점 원인
분석, 패치 방향, PoC 등을 영어로 설명

지불 방법: 바운티 수령 방법 (WIRE TRANSFER 추천)

기여자: ZDI 및 CVE 발급 시 들어갈 이름

파일 첨부: 분석 보고서, PoC 파일, 영상 자료 등

취약점 제보 절차
2. Zero Day Initiative(ZDI) 제보

© Hackingcamp. All Rights Reserved

W8-BEN 문서 Wire Transfer 정보 신분증/여권 사본

취약점 제보 절차
3. CNE 기관에 직접 제보

© Hackingcamp. All Rights Reserved

https://cve.mitre.org/

취약점 제보 결과
프로젝트 결과

© Hackingcamp. All Rights Reserved

감사합니다.
QnA

화이트햇 스쿨 1기 강찬송(ssong_k), 김민서(__yeonyeon)

© Hackingcamp. All Rights Reserved

